

Edition 5.0 2023-06

INTERNATIONAL STANDARD

BASIC EMC PUBLICATION

Electromagnetic compatibility (EMC) – Part 4-6: Testing and measurement techniques – Immunity to conducted disturbances, induced by radio-frequency fields

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.100.20 ISBN 978-2-8322-7076-9

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

F	DREWO	PRD	6
IN	TRODU	JCTION	8
1	Scop	pe	9
2	Norm	native references	9
3	Term	ns and definitions	9
4		eral	
5		levels	
6		equipment and level adjustment procedure	
U	6.1	Test generator	
	6.2	Coupling and decoupling devices	
	6.2.1		
	6.2.2		
	6.2.3		
	6.2.4	• •	
	6.2.5	•	
	6.3	Verification of the common-mode impedance at the EUT port of coupling and	
	0.0	decoupling devices	22
	6.3.1	General	22
	6.3.2	Insertion loss of the 150 Ω to 50 Ω adapters	23
	6.4	Setting of the test generator	25
	6.4.1	General	25
	6.4.2	Setting of the output level at the EUT port of the coupling device	25
7	Test	setup and injection methods	27
	7.1	Test setup	27
	7.2	EUT comprising a single unit	28
	7.3	EUT comprising several units	30
	7.4	Rules for selecting injection methods and test points	31
	7.4.1	General	31
	7.4.2	Injection method	31
	7.4.3	Ports to be tested	32
	7.5	CDN injection application	32
	7.6	Clamp injection application	34
	7.7	Direct injection application	36
8	Test	procedure	36
9	Evalu	uation of the test results	37
10	Test	report	38
Ar	nnex A ((normative) EM and decoupling clamps	39
	A.1	EM clamps	
	A.1.1	•	
	A.1.2		
	A.2	EM clamp characterization	
	A.2.1	·	
	A.2.2	·	
	A.3	Decoupling clamp characterization	
	A.3.1		
	A.3.2		

A.3.3	Impedance	47
A.3.4	Decoupling factor	48
Annex B (i	nformative) Selection criteria for the frequency range of application	50
Annex C (i	nformative) Guidelines for selecting test levels	52
Annex D (i	nformative) Information on coupling and decoupling networks	53
D.1	Basic features of the coupling and decoupling networks	53
	Examples of coupling and decoupling networks	
Annex E (i	nformative) Information for the test generator specification	58
Annex F (i	nformative) Test setup for large EUTs	59
F.1	General	59
F.2	Test setup for large EUTs	59
Annex G (i	nformative) Measurement uncertainty of the voltage test level	62
G.1	General	62
G.2	General symbols	62
G.3	Uncertainty budgets for test methods	62
G.3.1	Definition of the measurand	62
G.3.2	MU contributors of the measurand	63
G.3.3	Input quantities and calculation examples for expanded uncertainty	64
G.4	Expression of the calculated measurement uncertainty and its application	
	nformative) Testing with multiple signals	
	General	
H.2	Intermodulation	73
	Power requirements	
	Level-setting requirements	
	Linearity check and harmonics checks of the test generator	
	EUT performance criteria with multiple signals	
	formative) Port-to-port injection	
l.1	General	76
	Test setup for injection on identical ports	
I.2.1	Selection of ports	
1.2.2	Procedure for port-to-port injection	
	nformative) Amplifier compression and non-linearity	
•	Objective of limiting amplifier distortion	
	Possible problems caused by harmonics and saturation	
	Limiting the harmonic content in the disturbance signal	
	Effect of linearity characteristic on the immunity test	
J.4.1	General	
J.4.2	Evaluation of the amplifier linearity characteristic	
	ny	
gp.	,	
Figure 1 –	Diagram showing EM fields near the EUT due to common-mode currents on	
	Diagram choming Zim notae near the Zerr and to common meas can ente en	12
Figure 2 –	Schematic setup for immunity test to RF conducted disturbances	13
_	Example of unmodulated and modulated RF signal	
_	Test generator setup	
_	Principle of coupling and decoupling – Symbols used for the indicated setup	10
rigure 5 –	rimciple of coupling and decoupling – symbols used for the indicated setup	17

Figure 6 – Principle of coupling and decoupling – Principle of direct injection to screened cables	17
Figure 7 – Principle of coupling and decoupling – Principle of coupling to unscreened cables according to the CDN method	18
Figure 8 – Principle of coupling and decoupling – Principle of decoupling	18
Figure 9 – Example of circuit for evaluating the transmission loss of the current clamp level-setting	21
Figure 10 – Example of circuit for level-setting setup in a 150 Ω test jig	21
Figure 11 – Example of the setup geometry to verify the impedance characteristics of the coupling and decoupling devices	23
Figure 12 – Setup principle to verify Z_{Ce} of the coupling and decoupling device	24
Figure 13 – Setup principle for measuring the insertion loss of two 150 Ω to 50 Ω adapters	24
Figure 14 – Circuit and construction of the 150 Ω to 50 Ω adapter	24
Figure 15 – Definition of a common-mode point for unscreened and screened cables	26
Figure 16 – Setup for level-setting at the EUT port of the coupling/decoupling devices	27
Figure 17 – Example of test setup with a single unit EUT with only one CDN for injection (top view)	28
Figure 18 – Example of test setup with a single unit EUT (top view) using multiple CDNs	29
Figure 19 – Example of a test setup with a multi-unit EUT (top view)	30
Figure 20 – Rules for selecting the injection method	31
Figure 21 – Immunity test for two-port EUT (when only one CDN can be used)	34
Figure 22 – General principle of a test setup using clamp injection devices	35
Figure 23 – Example of the test unit locations on the ground plane when using injection clamps (top view)	36
Figure A.1 – Example: Construction details of the EM clamp	40
Figure A.2 – Example: Concept of the EM clamp	41
Figure A.3 – Dimension of a reference plane	42
Figure A.4 – Test jig	42
Figure A.5 – Test jig with inserted clamp	42
Figure A.6 – Impedance / decoupling factor measurement setup	43
Figure A.7 – Typical examples for clamp impedance, three typical clamps	45
Figure A.8 – Typical examples for decoupling factors, three typical clamps	45
Figure A.9 – Normalization setup for coupling factor measurement	46
Figure A.10 – S_{21} coupling factor measurement setup	46
Figure A.11 – Typical examples for coupling factor, three typical clamps	47
Figure A.12 – Decoupling clamp characterization measurement setup	48
Figure A.13 – Typical examples for the decoupling clamp impedance	48
Figure A.14 – Typical examples for decoupling factors	49
Figure B.1 – Start frequency as function of cable length and equipment size	51
Figure D.1 – Example of a simplified diagram for the circuit of CDN-S1 used with screened cables (see 6.2.2.5)	54
Figure D.2 – Example of simplified diagram for the circuit of CDN-M1, CDN-M2 and CDN-M3 used with unscreened supply (mains) lines (see 6.2.2.2)	54

Figure D.3 – Example of a simplified diagram for the circuit of CDN-AF2 used with unscreened unbalanced lines (see 6.2.2.4)	55
Figure D.4 – Example of a simplified diagram for the circuit of CDN-T2, used with an unscreened balanced pair (see 6.2.2.3)	55
Figure D.5 – Example of a simplified diagram of the circuit of CDN-T4 used with unscreened balanced pairs (see 6.2.2.3)	56
Figure D.6 – Example of a simplified diagram of the circuit of CDN AF8 used with unscreened unbalanced lines (see 6.2.2.4)	56
Figure D.7 – Example of a simplified diagram of the circuit of CDN-T8 used with unscreened balanced pairs (see 6.2.2.3)	57
Figure F.1 – Example of large EUT test setup with elevated horizontal reference ground plane	60
Figure F.2 – Example of large EUT test setup with vertical reference ground plane	61
Figure G.1 – Example of influences upon voltage test level using CDN	63
Figure G.2 – Example of influences upon voltage test level using EM clamp	63
Figure G.3 – Example of influences upon voltage test level using current clamp	63
Figure G.4 – Example of influences upon voltage test level using direct injection	64
Figure G.5 – Circuit for level-setting setup of CDN	65
Figure H.1 – Test frequencies f_1 and f_2 and intermodulation frequencies of the second	
and third order	73
Figure I.1 – Example of setup, port-to-port injection	77
Figure J.1 – Amplifier linearity measurement setup	80
Figure J.2 – Linearity characteristic	81
Figure J.3 – Measurement setup for modulation depth	81
Figure J.4 – Spectrum of AM modulated signal	82
Table 1 – Test levels	
Table 2 – Characteristics of the test generator	
Table 3 – Main parameter of the combination of the coupling and decoupling device	
Table 4 – Usage of CDNs	19
Table B.1 – Main parameter of the combination of the coupling and decoupling device when the frequency range of the test is extended above 80 MHz	50
Table E.1 – Required power amplifier output power to obtain a test level of 10 V	58
Table G.1 – CDN level-setting process	65
Table G.2 – CDN test process	65
Table G.3 – EM clamp level-setting process	67
Table G.4 – EM clamp test process	68
Table G.5 – Current clamp level-setting process	69
Table G.6 – Current clamp test process	69
Table G.7 – Direct injection level-setting process	70
Table G.8 – Direct injection test process	71

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ELECTROMAGNETIC COMPATIBILITY (EMC) -

Part 4-6: Testing and measurement techniques – Immunity to conducted disturbances, induced by radio-frequency fields

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 61000-4-6 has been prepared by subcommittee 77B: High frequency phenomena, of IEC technical committee 77: Electromagnetic compatibility. It is an International Standard.

It forms Part 4-6 of IEC 61000. It has the status of a basic EMC publication in accordance with IEC Guide 107.

This fifth edition cancels and replaces the fourth edition published in 2013. This edition constitutes a technical revision.

This edition includes the following significant technical changes with respect to the previous edition:

- a) selection of injection devices revised;
- b) need of AE impedance check for clamp injection removed and Annex H deleted;
- c) saturation check revised;
- d) new Annex H on testing with multiple signals;

e) level-setting only with feedback loop.

The text of this International Standard is based on the following documents:

Draft	Report on voting
77B/863/FDIS	77B/865/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 61000 series, published under the general title *Electromagnetic* compatibility (EMC), can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

IMPORTANT – The "colour inside" logo on the cover page of this document indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

INTRODUCTION

IEC 61000 is published in separate parts according to the following structure:

Part 1: General

General considerations (introduction, fundamental principles)

Definitions, terminology

Part 2: Environment

Description of the environment

Classification of the environment

Compatibility levels

Part 3: Limits

Emission limits

Immunity limits (in so far as they do not fall under the responsibility of the product committees)

Part 4: Testing and measurement techniques

Measurement techniques

Testing techniques

Part 5: Installation and mitigation guidelines

Installation guidelines

Mitigation methods and devices

Part 6: Generic standards

Part 9: Miscellaneous

Each part is further subdivided into several parts, published either as international standards or as technical specifications or technical reports, some of which have already been published as sections. Others will be published with the part number followed by a dash and a second number identifying the subdivision (example: IEC 61000-6-1).

This part is an international standard which gives immunity requirements and test procedures related to conducted disturbances induced by radio-frequency fields.

ELECTROMAGNETIC COMPATIBILITY (EMC) -

Part 4-6: Testing and measurement techniques – Immunity to conducted disturbances, induced by radio-frequency fields

1 Scope

This part of IEC 61000 relates to the conducted immunity requirements of electrical and electronic equipment to electromagnetic disturbances coming from intended radio-frequency (RF) transmitters in the frequency range 150 kHz up to 80 MHz.

NOTE 1 Product committees might decide to use the methods described in this document also for frequencies up to 230 MHz (see Annex B) although the methods and test instrumentation are intended to be used in the frequency range up to 80 MHz.

Equipment not having at least one conducting wire or cable (such as mains supply, signal line or earth connection) which can couple the equipment to the disturbing RF fields is excluded from the scope of this document.

NOTE 2 Test methods are specified in this part of IEC 61000 to assess the effect that conducted disturbing signals, induced by electromagnetic radiation, have on the equipment concerned. The simulation and measurement of these conducted disturbances are not adequately exact for the quantitative determination of effects. The test methods specified are structured for the primary objective of establishing adequate repeatability of results at various facilities for quantitative analysis of effects.

The object of this document is to establish a common reference for evaluating the functional immunity of electrical and electronic equipment when subjected to conducted disturbances induced by RF fields. The test method in this document describes a consistent method to assess the immunity of an equipment or system against a specified phenomenon.

NOTE 3 As described in IEC Guide 107, this document is a basic EMC publication for use by product committees of the IEC. As also stated in Guide 107, the IEC product committees are responsible for determining whether this immunity test standard should be applied or not, and if applied, they are responsible for determining the appropriate test levels and performance criteria.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

CISPR 16-1-2, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-2: Radio disturbance and immunity measuring apparatus – Coupling devices for conducted disturbance measurements